Michael Wimble

1144 Snowberry Court, Sunnyvale, CA 94087 (408) 739-6114 email: mike@wimble.org web sites: www.wimble.org webself.com

Background

- Senior scientist and engineer.
- Most successful roles are in discovering and solving **strategic problems** for a company, and as a tactical team member in implementing large systems within a tight schedule.
- Invent new technologies before they become common practice.
- Generate **patents** (see patent section below).
- Architect and implement major, revenue generating products as well as perform normal code **maintenance** and **testing**.
- Particular expertise in **program correctness** and solving complex problems, especially where **wide domain expertise** is required, spanning both **hardware and software**.
- Demonstrated ability to rapidly develop expertise in new technology.
- Created several inventions not reflected below, such as a **3D bicycle computer** that captures and displays a bicyclist's path, or a **knowledge engineering** and **office automation** product for nearly every aspect of law practice.
- Working on semantic technologies, such as recognizing place names in news articles.
- Working on deducing what I would call "knowledge in the sidebands" in an e-mail project that tries to act as an intelligence personal assistant.

Senior staff engineer 2004–present Vinq, San Jose, California

- Architected and implemented a social tagging system.
- Architected and implemented a e-mail analysis system that looks for queries in outgoing e-mail, responses to queries in incoming e-mails and creates a an automated "todo" list showing the status of responses owed to a manager or that a manager owes to others. Also creates statistical profiles of e-mail user behavior.
- Architected and implemented Perl modules for database replication and failover, GIS place abstraction and GIS data models. See knowlegeplex.org and dataplace.org.
- Architected, and implemented a hierarchical configuration system, news crawler, generalized logger, data change logger, error handler, proxy objects for database.
- Architected and implemented a programmable, pattern matching **web crawler** with feature extraction.
- Worked on locale determination, topic relevance and person extraction from crawled documents.
- Created site visualizations applications to show the state of databases, subsystems and so forth.
- Most of the work was done in Perl, with some C and some Java.

Research 2003-2004

• **Researched** a new consumer product to implement "ubiquitous computing" based on micro powered mobile devices that create a dynamic, mesh network. Worked on the prototype.

Senior staff engineer 2000–2002 Sun Microsystems, Menlo Park, California

- Architected, implemented and shipped a debugger data visualization system for netbeans that provided highly customizable display of data, similar to the Mathematica visualization model, for Java and classic languages (e.g., FORTRAN, C, C++). This increased the marketability and potential user base for what was previously, a Java-only product.
- Architected remote services, allowing a developer on, say, a Linux or Wintel box to develop

locally, yet compile, debug, deploy, and execute on a set of remote machines. This would greatly increase the number of developers who could immediately begin creating Sunbased products.

• Lectured various groups in the company on use of goal-directed problem solving methods, especially for use in debugging and as an expert system for customer support.

Senior engineer, web indexer group 1998–2000 AltaVista, San Mateo, California

- As **Project manager** for **improved relevance**, created the methodology of using regression to improve the ranking algorithm. Relevance increased more than 10% as a result.
- In order to create a useful regression set of data, I designed, implemented, and administered an online **user survey**. The result was a large database of queries and corresponding collaboratively-ranked search results.
- With diminished opportunities for increased relevance via ranking modification, was **project lead** for 3 simultaneous **strategic** projects to define the next generation of **search technologies**. These projects increased relevance via specific, **goal-directed** strategies, and improved the user experience by providing task-oriented guidance in the use of advance search strategies.
- Created a **site visualization tool** that provided a graphical overview of the status of all the machines involved in building, maintaining, and serving of search results.
- Created the technology to support site compression of query results.
- **Created** new **algorithms** to improve the performance and relevance in the search engine.

Consultant 1998 Winbond Systems Laboratory, San Jose, California

• To release Winbond from dependence on third-parties for critical technology, **designed and implemented** an **ASN compiler** that parsed **H.245** specifications (Control Protocol for Multimedia Communication) and created a portable, customizable C-language handler for H.245 messages.

Senior Engineer 1997–1998 Newton, Inc., Cupertino, California

• During the last few months of Newton's existence, was **toolsmith**. Analyzed the debugging needs for the group. Contributed to the overall design and engineering effort.

Senior engineer 1996–1997 Apple Computer, Cupertino, California

- To significantly speedup program startup, **rearchitected** "load on demand" in the debugger.
- To best leverage my background in **program correctness**, produced numerous **analyses of problems** and **proposed solutions** for a simpler, more robust product.
- Responsible for **cross group communication** between debugger, compiler, operating system, and Java groups.
- Acted as **consultant** in the C++ language, its use, and ensured the ability to debug all features of the language so that the future product would support all the required customer features.

Chief architect 1992–1996 Taligent, Cupertino, California

- Culminating over 10 years of research, design, and implementation effort, I created a **new paradigm** for debugging, using **goal-directed** problem solving to deliver a debugger which was able to significantly reduce software errors, implementation bottlenecks, and schedule risk. This work led to 5 patents, with 4 more in progress when the company was acquired.
- In order to further reduce software cost and time-to-market, the tool also supported debugging of **severely optimized code**, **design rule checking**, **performance analysis**, **coverage analysis**, and new models of team debugging (e.g., cooperative and competitive debugging).

• Designed and implemented the compiler/debugger communications, expression handling, core logic, data imaging and formatting, data read/write, language adapter, architecture adapter, register state, stack state, and stack viewer portions of the debugger while still acting as **architect** and **project leader** for the team.

Principle engineer 1987–1992 Rational, Santa Clara, California

Manager of the languages and environment group 1985–1986 Ebnek, Inc., Wichita, Kansas

1983–1985 Apollo Computers, Chelmsford, Massachusetts

CEO/CTO 1983–1985 Iowa Mountain Software, Hiawatha, Iowa

General Partner 1981–1983 Legal Data System, Houston, Texas

Proprietor 1977–1982 Wimble Robotics, Marion, Iowa

• Patents

Five software patents for my work in the design of the Taligent "cpProfessional" debugger product.

US06067641 Demand-based generation of symbolic information

US05956479Demand based generation of symbolic information

US05815653	Debugging system with portable debug environment-independent client and non-portable platform-specific server
US05812850	Object-oriented symbolic debugger using a compiler driven database and state modeling to control program execution
US05778230	Goal directed object-oriented debugging system

The patents cover the architecture and components involved in portable, cross machine debugging; the grammar used to communicate between the compiler and debugger—particularly how the compiler describes the effects of code optimization; and the goal-directed problem solving paradigm used in the core.

• Languages

Assembly (various), BASIC, C, C++, DHTML, DOM, HTML, Java, Javascript, Lisp, NesC, Pascal, Perl, Php, Ruby, XHTML, XML, XPATH, XSLT

- **Education:** BS in mathematics with electronics minor, University of Vermont. Partial completion of Master's degree program at Wichita State University.
- Various courses in J2EE and XML.